```{r data generation, echo = FALSE, results = "hide"} coef <- sample(c(2:9, -(2:9)), 3, replace = TRUE) x <- sample(c(-5:5), 2, replace = TRUE) H <- matrix(c(2 * coef[1], coef[2], coef[2], 2 * coef[3]), nrow = 2, ncol = 2) ix <- sample(1:4, 1, prob=c(0.35, 0.15, 0.15, 0.35)) ixt <- c("upper left", "upper right", "lower left", "lower right")[ix] ixn <- c("11", "12", "21", "22")[ix] sol <- H[ix] err <- unique(H[-ix]) err <- err[err != sol] sc <- num_to_schoice(sol, wrong = err, range = -25:25, method = "delta", delta = 1, digits = 0) plus <- ifelse(coef < 0, "", "+") ``` Question ======== Compute the Hessian of the function $$ \begin{aligned} f(x_1, x_2) = `r coef[1]` x_1^{2} `r plus[2]` `r coef[2]` x_1 x_2 `r plus[3]` `r coef[3]` x_2^{2} \end{aligned} $$ at $(x_1, x_2) = (`r x[1]`, `r x[2]`)$. What is the value of the `r ixt` element? ```{r questionlist, echo = FALSE, results = "asis"} answerlist(sc$questions, markup = "markdown") ``` Solution ======== The first-order partial derivatives are $$ \begin{aligned} f'_1(x_1, x_2) &= `r H[1,1]` x_1 `r plus[2]` `r H[1,2]` x_2 \\ f'_2(x_1, x_2) &= `r H[2,1]` x_1 `r plus[3]` `r H[2,2]` x_2 \end{aligned} $$ and the second-order partial derivatives are $$ \begin{aligned} f''_{11}(x_1, x_2) &= `r H[1,1]`\\ f''_{12}(x_1, x_2) &= `r H[1,2]`\\ f''_{21}(x_1, x_2) &= `r H[2,1]`\\ f''_{22}(x_1, x_2) &= `r H[2,2]` \end{aligned} $$ Therefore the Hessian is $$ \begin{aligned} f''(x_1, x_2) = `r toLatex(H, escape = FALSE)` \end{aligned} $$ independent of $x_1$ and $x_2$. Thus, the `r ixt` element is: $f''_{`r ixn`}(`r x[1]`, `r x[2]`) = `r sol`$. ```{r solutionlist, echo = FALSE, results = "asis"} answerlist(ifelse(sc$solutions, "True", "False"), markup = "markdown") ``` Meta-information ================ extype: schoice exsolution: `r mchoice2string(sc$solutions)` exname: Hessian