<>= ## parameters a <- sample(2:9, 1) b <- sample(seq(2, 4, 0.1), 1) c <- sample(seq(0.5, 0.8, 0.01), 1) ## solution res <- exp(b * c) * (a * c^(a-1) + b * c^a) @ \begin{question} What is the derivative of $f(x) = x^{\Sexpr{a}} e^{\Sexpr{b}x}$, evaluated at $x = \Sexpr{c}$? \end{question} \begin{solution} Using the product rule for $f(x) = g(x) \cdot h(x)$, where $g(x) := x^{\Sexpr{a}}$ and $h(x) := e^{\Sexpr{b}x}$, we obtain \begin{eqnarray*} f'(x) & = & [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\ & = & \Sexpr{a} x^{\Sexpr{a} - 1} \cdot e^{\Sexpr{b}x} + x^{\Sexpr{a}} \cdot e^{\Sexpr{b}x} \cdot \Sexpr{b} \\ & = & e^{\Sexpr{b}x} \cdot(\Sexpr{a} x^\Sexpr{a-1} + \Sexpr{b} x^{\Sexpr{a}}) \\ & = & e^{\Sexpr{b}x} \cdot x^\Sexpr{a-1} \cdot (\Sexpr{a} + \Sexpr{b}x). \end{eqnarray*} Evaluated at $x = \Sexpr{c}$, the answer is \[ e^{\Sexpr{b}\cdot \Sexpr{c}} \cdot \Sexpr{c}^\Sexpr{a-1} \cdot (\Sexpr{a} + \Sexpr{b}\cdot \Sexpr{c}) = \Sexpr{fmt(res, 6)}. \] Thus, rounded to two digits we have $f'(\Sexpr{c}) = \Sexpr{fmt(res)}$. \end{solution} %% \extype{num} %% \exsolution{\Sexpr{fmt(res)}} %% \exname{derivative exp} %% \extol{0.01}