1. Problem

An industry-leading company seeks a qualified candidate for a management position. A management consultancy carries out an assessment center which concludes in making a positive or negative recommendation for each candidate: From previous assessments they know that of those candidates that are actually eligible for the position (event E) 66% get a positive recommendation (event R). However, out of those candidates that are not eligible 65% get a negative recommendation. Overall, they know that only 9% of all job applicants are actually eligible.
What is the corresponding fourfold table of the joint probabilities? (Specify all entries in percent.)

	R	\bar{R}	sum
E	$\%$	$\%$	$\%$
\bar{E}	$\%$	$\%$	$\%$
sum	$\%$	$\%$	$\%$

Solution

Using the information from the text, we can directly calculate the following joint probabilities:

$$
\begin{aligned}
& P(E \cap R)=P(R \mid E) \cdot P(E)=0.66 \cdot 0.09=0.0594=5.94 \% \\
& P(\bar{E} \cap \bar{R})=P(\bar{R} \mid \bar{E}) \cdot P(\bar{E})=0.65 \cdot 0.91=0.5915=59.15 \%
\end{aligned}
$$

The remaining probabilities can then be found by calculating sums and differences in the fourfold table:

	R	\bar{R}	sum
E	$\mathbf{5 . 9 4}$	3.06	$\mathbf{9 . 0 0}$
\bar{E}	31.85	$\mathbf{5 9 . 1 5}$	91.00
sum	37.79	62.21	$\mathbf{1 0 0 . 0 0}$

(a) $P(E \cap R)=5.94 \%$
(b) $P(\bar{E} \cap R)=31.85 \%$
(c) $P(E \cap \bar{R})=3.06 \%$
(d) $P(\bar{E} \cap \bar{R})=59.15 \%$
(e) $P(R)=37.79 \%$
(f) $P(\bar{R})=62.21 \%$
(g) $P(E)=9.00 \%$
(h) $P(\bar{E})=91.00 \%$
(i) $P(\Omega)=100.00 \%$

