1. Problem

Compute the Hessian of the function

$$
f\left(x_{1}, x_{2}\right)=7 x_{1}^{2}+5 x_{1} x_{2}+3 x_{2}^{2}
$$

at $\left(x_{1}, x_{2}\right)=(1,4)$. What is the value of the upper left element?
(a) 6
(b) 7
(c) 14
(d) 5
(e) -19

Solution

The first-order partial derivatives are

$$
\begin{aligned}
f_{1}^{\prime}\left(x_{1}, x_{2}\right) & =14 x_{1}+5 x_{2} \\
f_{2}^{\prime}\left(x_{1}, x_{2}\right) & =5 x_{1}+6 x_{2}
\end{aligned}
$$

and the second-order partial derivatives are

$$
\begin{aligned}
f_{11}^{\prime \prime}\left(x_{1}, x_{2}\right) & =14 \\
f_{12}^{\prime \prime}\left(x_{1}, x_{2}\right) & =5 \\
f_{21}^{\prime \prime}\left(x_{1}, x_{2}\right) & =5 \\
f_{22}^{\prime \prime}\left(x_{1}, x_{2}\right) & =6
\end{aligned}
$$

Therefore the Hessian is

$$
f^{\prime \prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{rr}
14 & 5 \\
5 & 6
\end{array}\right)
$$

independent of x_{1} and x_{2}. Thus, the upper left element is: $f_{11}^{\prime \prime}(1,4)=14$.
(a) False
(b) False
(c) True
(d) False
(e) False

