1. Problem

Using the data provided in regression.csv estimate a linear regression of y on x 1 and x 2 . Answer the following questions.
(a) Proportion of variance explained (in percent):
(b) F-statistic:
(c) Characterize in your own words how the response y depends on the regressors x 1 and x 2 .
(d) Upload the R script you used to analyze the data.

Solution

The presented results describe a semi-logarithmic regression.
Call:
$\operatorname{lm}($ formula $=\log (y) \sim x 1+x 2$, data $=d)$
Residuals:

Min	$1 Q$	Median	3Q	Max
-2.68802	-0.67816	-0.01803	0.68866	2.35064

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.06802 0.13491 -0.504 0.616
$\mathrm{x} 1 \quad 1.37863 \quad 0.13351 \quad 10.326 \quad 9.34 \mathrm{e}-15{ }^{* * *}$

x 2	-0.21449	0.13995	-1.533	0.131

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.052 on 58 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6391
F-statistic: 54.12 on 2 and 58 DF, p-value: 5.472e-14
The mean of the response y increases with increasing $x 1$. If $x 1$ increases by 1 unit then a change of y by about 296.94 percent can be expected. Also, the effect of x 1 is significant at the 5 percent level.
Variable x 2 has no significant influence on the response at 5 percent level.
The R-squared is 0.6511 and thus 65.11 percent of the variance of the response is explained by the regression.
The F-statistic is 54.12 .
(a) Proportion of variance explained: 65.11 percent.
(b) F-statistic: 54.12.
(c) Characterization: semi-logarithmic.
(d) R code.

