```{r data generation, echo = FALSE, results = "hide"} ## parameters a <- sample(2:9, 1) b <- sample(seq(2, 4, 0.1), 1) c <- sample(seq(0.5, 0.8, 0.01), 1) ## solution res <- exp(b * c) * (a * c^(a-1) + b * c^a) ``` Question ======== What is the derivative of $f(x) = x^{`r a`} e^{`r b` x}$, evaluated at $x = `r c`$? Solution ======== Using the product rule for $f(x) = g(x) \cdot h(x)$, where $g(x) := x^{`r a`}$ and $h(x) := e^{`r b` x}$, we obtain $$ \begin{aligned} f'(x) &= [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\ &= `r a` x^{`r a` - 1} \cdot e^{`r b` x} + x^{`r a`} \cdot e^{`r b` x} \cdot `r b` \\ &= e^{`r b` x} \cdot(`r a` x^`r a-1` + `r b` x^{`r a`}) \\ &= e^{`r b` x} \cdot x^`r a-1` \cdot (`r a` + `r b` x). \end{aligned} $$ Evaluated at $x = `r c`$, the answer is $$ e^{`r b` \cdot `r c`} \cdot `r c`^`r a-1` \cdot (`r a` + `r b` \cdot `r c`) = `r fmt(res, 6)`. $$ Thus, rounded to two digits we have $f'(`r c`) = `r fmt(res)`$. Meta-information ================ extype: num exsolution: `r fmt(res)` exname: derivative exp extol: 0.01