Exam 1

  1. Question

    Given two points p=(3,4) and q=(5,2) in a Cartesian coordinate system:
    1. What is the Manhattan distance d1 (p,q)?
    2. What is the Euclidean distance d2 (p,q)?
    3. What is the maximum distance d (p,q)?

    Solution

    The distances are visualized below in green ( d1 ), red ( d2 ), and blue ( d ).
    

    1. d1 (p,q)= i | pi - qi |=|3-5|+|4-2|=4.
    2. d2 (p,q)= i ( pi - qi )2 =(3-5 )2 +(4-2 )2 =2.828.
    3. d (p,q)= maxi | pi - qi |=max(|3-5|,|4-2|)=2.