

Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis


```
Solution

Using the product rule for f(x) = g(x) \cdot h(x), where g(x) := x^{3} and h(x) := e^{2.7x}, we obtain

f'(x) = \{g(x) \cdot h(x)\} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
= \{g(x) \cdot h(x)\} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x)\} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'
```

Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

Overview

Time	Content
14:00	Introduction (overview, installation,)
14:30	Dynamic exercises
15:00	One-for-all
15:30	— Break —
16:00	E-Learning (Moodle, Canvas, ARSnova,)
16:30	Written exams (NOPS)
17:00	Outlook

More details: http://www.R-exams.org/general/user2019/

1

Motivation:

- Many of us teach large lecture courses, also as support for other fields.
- For example, statistics, probability, or mathematics in curricula such as business and economics, social sciences, psychology, etc.
- At WU Wien and Universität Innsbruck: Some courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.

Strategy:

- Individualized organization of learning, feedback, and assessment.
- The same pool of exercises at the core of all parts of the course.

Learning	Feedback	Assessment
Lecture	Live quiz	Written exam
Live stream	(+ Tutorial)	
Textbook	Self test	Online test
Screencast	(+ Forum)	
	Lecture Live stream Textbook	Lecture Live quiz Live stream (+ Tutorial) Textbook Self test

	Learning	Feedback	Assessment
Synchronous	Lecture	Live quiz	Written exam
	Live stream	(+ Tutorial)	
Asynchronous	Textbook	Self test	Online test
	Screencast	(+ Forum)	

Learning:

- Standard: Textbook along with presentation slides.
- Streaming: Videos streamed simultaneously or (pre-)recorded.

Learning	Feedback	Assessment
Lecture	Live quiz	Written exam
Live stream	(+ Tutorial)	
Textbook	Self test	Online test
Screencast	(+ Forum)	
	Lecture Live stream Textbook	Lecture Live quiz Live stream (+ Tutorial) Textbook Self test

Feedback & assessment:

- Scalability: Randomized dynamic exercises required.
- Feedback: Support for complete correct solutions.
- Flexibility: Automatic rendering into different assessment formats.

R package exams

Exercises:

- Each exercise is a single file (either .Rmd or .Rnw).
- Contains question and (optionally) the corresponding solution.
- Dynamic templates if R code is used for randomization.

Answer types:

- Single choice and multiple choice.
- Numeric values.
- Text strings (typically short).
- Combinations of the above (cloze).

R package exams

Output:

- PDF fully customizable vs. standardized with automatic scanning/evaluation.
- HTML fully customizable vs. embedded into exchange formats below.
- Moodle XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for Canvas or OLAT/OpenOLAT.
- Blackboard (partially based on QTI 1.2)
- ARSnova, TCExam, LOPS, ...

Infrastructure: Standing on the shoulders of lots of open-source software...

R package exams

Туре	Software	Purpose	
Statistical computing	R	Random data generation, computations	
Writing/reporting	ĽΤ _Ε Χ, Markdown	Text formatting, mathematical notation	
Reproducible research	knitr, rmarkdown, Sweave	Dynamically tie everything together	
Document conversion	TtH/TtM, pandoc	Conversion to HTML and beyond	
Image manipulation	ImageMagick, magick, png	Embedding graphics	
Web technologies	base64enc, RCurl,	Embedding supplementary files	
Learning management	Moodle, OpenOLAT, Canvas, ARSnova,	E-learning infrastructure	

Installation

Required tools:

- R (including Rtools on Windows and OS X)
 RStudio recommended for beginners
- ② R package exams (including dependencies)
 install.packages("exams", dependencies = TRUE)
- **3** LATEX for producing PDF output
- 4 Pandoc (e.g., provided along with RStudio)

More details: http://www.R-exams.org/tutorials/installation/

First steps

Starting point: Create exams skeleton.

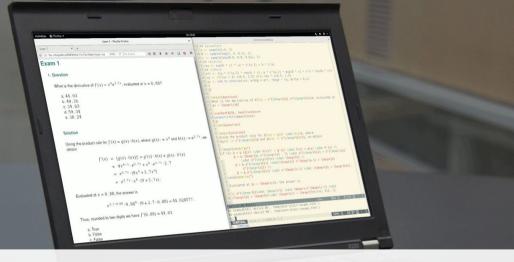
- demo-*.R scripts.
- exercises/ folder with all .Rmd/.Rnw exercises.
- templates/ folder with various customizable templates.
- nops/ folder (empty) for exams2nops() output.

```
R> exams_skeleton()
```

More details: http://www.R-exams.org/tutorials/first_steps/

First steps

R> exams2pdf("swisscapital.Rmd")


Single-choice question: knowledge quiz about the Swiss capital (http://www.R-exams.org/templates/swisscapital/).
R> exams2html("swisscapital.Rmd")

Numeric question with mathematical notation: product rule for derivatives (http://www.R-exams.org/templates/deriv/).

```
R> exams2html("deriv.Rmd")
R> exams2html("deriv.Rmd", converter = "pandoc-mathjax")
R> exams2pdf("deriv.Rmd")
```

Extract the meta-information to check whether it is processed correctly.

```
R> exams_metainfo(exams2html(c("swisscapital.Rmd", "tstat.Rmd")))
exam1
    1. Swiss Capital: 2
    2. t statistic: 8.493 (8.483--8.503)
```


Dynamic Exercises

Dynamic exercises

Text file:

- Random data generation (optional).
- 2 Question.
- 3 Solution (optional).
- 4 Metainformation.

Examples:

Multiple-choice knowledge quiz with shuffled answer alternatives.

Which of these institutions already hosted a useR! conference?

Dynamic numeric arithmetic exercise.

Example: Which of these institutions already hosted a useR! conference?

Example: Which of these institutions already hosted a useR! conference?

Question

=======

Which of these institutions already hosted a useR! conference?

Answerlist

- * National Institute of Standards and Technology
- * Agrocampus Ouest
- * Technische Universität Dortmund
- * Universität Wien
- * ETH Zürich
- * Københavns Universitet

Example: Which of these institutions already hosted a useR! conference?

Solution

The list of useR! (and DSC) hosts can be found at https://www.R-project.org/conferences/>.

Answerlist

- * True. useR! 2010 was hosted at NIST.
- * True. useR! 2009 was hosted at Agrocampus Ouest, Rennes.
- * True. useR! 2008 was hosted at TU Dortmund.
- * False. Universität Wien did not host an R conference yet (only TU Wien and WU Wien).
- * False. ETH Zürich did not host an R conference yet.
- * False. Københavns Universitet hosted DSC but not useR!.

Example: Which of these institutions already hosted a useR! conference?

Solution

The list of useR! (and DSC) hosts can be found at https://www.R-project.org/conferences/>.

Answerlist

- * True. useR! 2010 was hosted at NIST.
- * True. useR! 2009 was hosted at Agrocampus Ouest, Rennes.
- * True. useR! 2008 was hosted at TU Dortmund.
- * False. Universität Wien did not host an R conference yet (only TU Wien and WU Wien).
- * False. ETH Zürich did not host an R conference yet.
- * False. Københavns Universitet hosted DSC but not useR!.

Meta-information

exname: useR! conferences

extype: mchoice
exsolution: 111000

exshuffle: 5

```
<<echo=FALSE, results=hide>>=
## parameters
a <- sample(2:9, 1)
b <- sample(2:4, 1)/10
c <- sample(6:9, 1)/10
## solution
res <- exp(b * c) * (a * c^(a-1) + b * c^a)
@</pre>
```

```
<<echo=FALSE, results=hide>>=
## parameters
a <- sample(2:9, 1)
b <- sample(2:4, 1)/10
c <- sample(6:9, 1)/10
## solution
res <- exp(b * c) * (a * c^(a-1) + b * c^a)
0

\begin{question}
\what is the derivative of $f(x) = x^{\Sexpr{a}} e^{\Sexpr{b} x}$, evaluated at $x = \Sexpr{c}$?
\end{question}</pre>
```

Dynamic exercises: Single choice

extype: schoice
exsolution: 010

Dynamic exercises: Single choice

extype: schoice exsolution: 010

Question

What is the seat of the federal authorities in Switzerland (i.e., the de facto capital)?

- (a) St. Gallen
- (b) Zurich
- (c) Bern
- (d) Basel
- (e) Vaduz

Knowledge quiz: Shuffled distractors.

Dynamic exercises: Single choice

extype: schoice exsolution: 010

Question

What is the derivative of $f(x) = x^7 e^{3.2x}$, evaluated at x = 0.85?

- (a) 40.08
- (b) 55.65
- (c) 44.94
- (d) 45.32
- (e) 31.56

Numeric exercises: Distractors are random numbers and/or typical arithmetic mistakes.

Dynamic exercises: Multiple choice

extype: mchoice
exsolution: 011

Dynamic exercises: Multiple choice

extype: mchoice exsolution: 011

Question

Which of these institutions already hosted a useR! conference?

- (a) Københavns Universitet
- (b) ETH Zürich
- (c) Agrocampus Ouest
- (d) National Institute of Standards and Technology
- (e) Universität Wien

Knowledge quiz: Shuffled true/false statements.

Dynamic exercises: Multiple choice

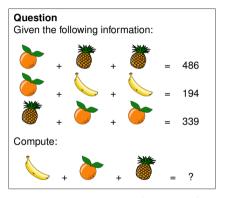
extype: mchoice
exsolution: 011

Question In the following figure the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.) (a) The location of both distributions is about the same. (b) Both distributions contain no outliers

Interpretations: Statements that are approximately correct or clearly wrong.

Dynamic exercises: Numeric

extype: num


exsolution: 123.45

Dynamic exercises: Numeric

extype: num

exsolution: 123.45

Numeric exercises: Solving arithmetic problems.

Dynamic exercises: String

extype: string

exsolution: ANSWER

Dynamic exercises: String

extype: string

exsolution: ANSWER

Question

What is the name of the R function for extracting the estimated coefficients from a fitted (generalized) linear model object?

Knowledge quiz: Sample a word/phrase from a given vocabulary or list of question/answer pairs.

Dynamic exercises: Cloze

extype: cloze

exclozetype: mchoice|num

exsolution: 10|123.45

Dynamic exercises: Cloze

extype: cloze

exclozetype: mchoice|num

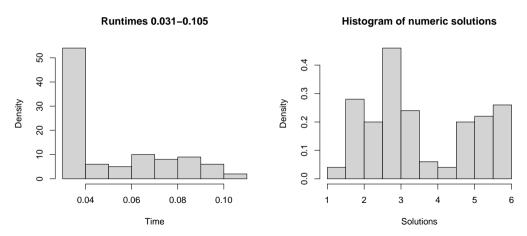
exsolution: 10|123.45

Question

Using the data provided in regression.csv estimate a linear regression of y on x and answer the following questions.

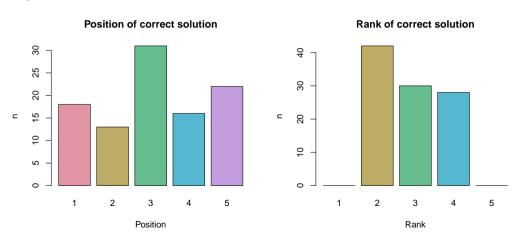
- (a) x and y are not significantly correlated / y increases significantly with x / y decreases significantly with x
- (b) Estimated slope with respect to x:

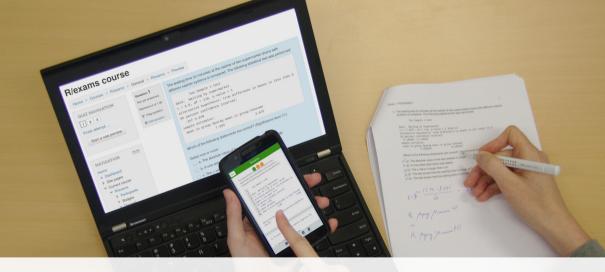
Exercises with sub-tasks: Several questions based on same problem setting.


Dynamic exercises: Static to numeric to single-choice

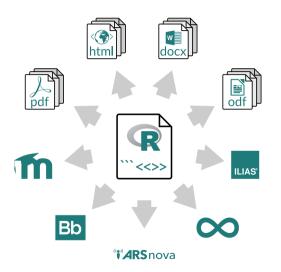
#	Exercise templates	Dynamic?	Туре	Description
1	expderiv1.Rmd expderiv1.Rnw	No	num	Fixed parameters and numeric solution.
2	expderiv2.Rmd expderiv2.Rnw	No	schoice	As in $\#1$ but with single-choice solution (five answer alternatives).
3	expderiv3.Rmd expderiv3.Rnw	Yes	num	Randomly-drawn parameters with dynamic computation of correct solution, based on #1.
4	expderiv4.Rmd expderiv4.Rnw	Yes	schoice	Randomly-drawn parameters (as in #3) with dynamically- generated single-choice solution (as in #2), computed by num_to_schoice().
5	expderiv5.Rmd expderiv5.Rnw	Yes	schoice	As in #4 but with the last alternative: None of the above.

More details: http://www.R-exams.org/tutorials/static_num_schoice/


Stress tester


R> s <- stresstest_exercise("expderiv4.Rmd")
R> plot(s)

Stress tester


R> s <- stresstest_exercise("expderiv4.Rmd")
R> plot(s)

One-for-All

One-for-all

- The same exercise can be exported into different formats.
- Multiple standalone documents vs. combined exercise pool.
- Multiple-choice and single-choice supported in all output formats.

One-for-all

Idea: An exam is simply a list of exercise templates.

```
R> myexam <- list(
+    "conferences.Rmd",
+    "deriv2.Rmd",
+    c("ttest.Rnw", "boxplots.Rnw")
+ )</pre>
```

Draw random exams:

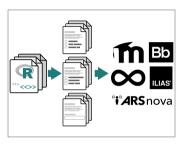
- First randomly select one exercise from each list element.
- Generate random numbers/input for each selected exercise.
- Combine all exercises in output file(s) (PDF, HTML, ...).

One-for-all

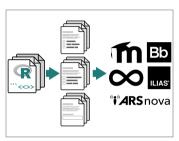
Written exam:

```
R> exams2nops(myexam, n = 3, dir = odir,
+ language = "fr", institution = "useR! 2019")
Online test:
R> exams2moodle(myexam, n = 10, dir = odir)
Live quiz:
R> exams2arsnova(myexam, n = 1, dir = odir)
```

Other: exams2pdf(), exams2html(), exams2canvas(), exams2blackboard(),...


Online quiz: https://eeecon.uibk.ac.at/~moodle/

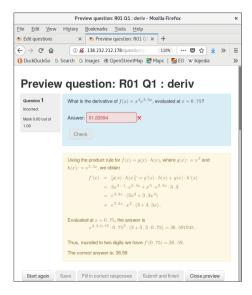
Login: E-mail (lower-case) **Password:** 8-digit code

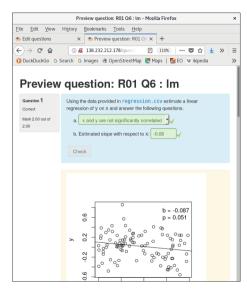

1. Goal

- Online tests with flexible exercise types.
- Possibly: Dynamic supplements and/or complete correct solution.
- Random variations of similar exercises to reduce the risk of cheating.
- Use university's learning management system, e.g., Moodle, ...

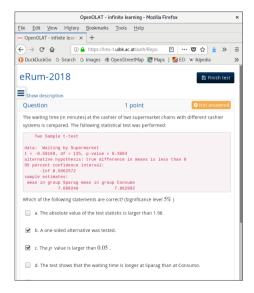
2. Create

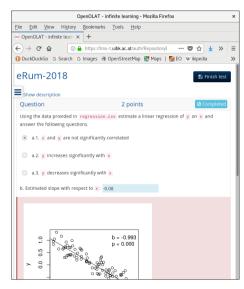
- Draw random replications from exercise templates, e.g., via exams2moodle(),...
- Automatically embed these into exchange file format (typically via HTML/XML).

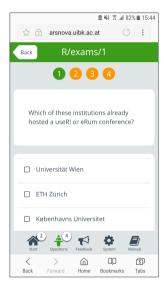

2. Create


- Draw random replications from exercise templates, e.g., via exams2moodle(),...
- Automatically embed these into exchange file format (typically via HTML/XML).

3. Import

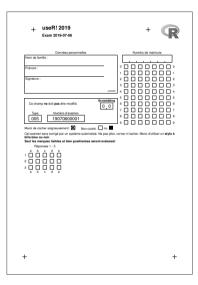

- Import in learning management system.
- From there handling "as usual" in the system.


E-Learning: Online test




E-Learning: Online test

E-Learning: Live quiz

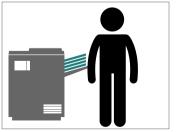

Flexible: Roll your own.


- Combination with user-specified template in exams2pdf() and exams2pandoc().
- Customizable but typically has to be evaluated "by hand".

Standardized: "NOPS" format.

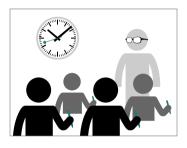
- exams2nops() intended for single- and multiple-choice questions.
- Can be scanned and evaluated automatically within R.
- Limited support for open-ended questions that have to be marked by a person.

More details: http://www.R-exams.org/tutorials/exams2nops/



1. Create

- As illustrated above.
- Using exams2nops(), create (individual)
 PDF files for each examinee.



1. Create

- As illustrated above.
- Using exams2nops(), create (individual)
 PDF files for each examinee.

2. Print

- Print the PDF exams, e.g., on a standard printer.
- ... or for large exams at a print shop.

3. Exam

- Conduct the exam as usual.
- Collect the completed exams sheets.

4. Scan

- Scan exam sheets, e.g., on a photocopier.
- Using nops_scan(), process the scanned exam sheets to machine-readable content.

4. Scan

- Scan exam sheets, e.g., on a photocopier.
- Using nops_scan(), process the scanned exam sheets to machine-readable content.

5. Evaluate

- Using nops_eval(), evaluate the exam to obtain marks, points, etc. and individual HTML reports for each examinee.
- Required files: Correct answers (1.), scans
 (4.), and a participant list in CSV format.

A vizsga eredménye

Név: Jane Doe Regisztrációs szám: 1501090

Érdemjegy: 5 Pontok: 3.1666666666667

Értékelés

Kérdés	Pontok	Adott válasz	Helyes válasz
1	1.0000000	c_	c_
2	0.5000000	abc_e	abc
3	0.0000000		ab_d_
4	1.0000000	c_	_bc
5	0.6666667	d_	ab_d_
6	0.0000000	_bc_e	a_c_

Vizsgalap

⊥ R University

Exam 2015-07-29

Personal Data	Registr
Family Name: DoE	1,5,0
Given Name: JANE	
Signature:	

A vizsga eredménye

Név: Ambi Dexter Regisztrációs szám: 9901071 Érdemjegy: 5 Pontok: 1.5

Pontok:

Kérdés	Pontok	Adott válasz	Helyes válasz
1	0.0	a_c_	d_
2	0.0	a_cde	ab_d_
3	0.0	_b	е
4	0.0		a_cd_
5	0.0		_bc
6	1.5	abc	a

Vizsgalap

+ Universität Innsbruck

Persönliche Daten

Klausur 2015-07-29

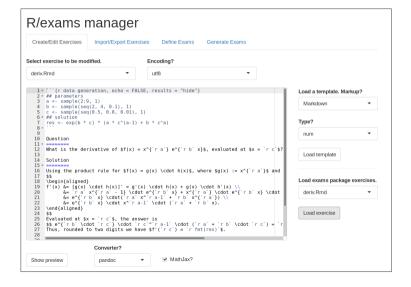
Nachname: Dexter	9,9,1
Vorname: Ambi	
Unterschrift: / / D	_ 2 🗆 🗆

Matril

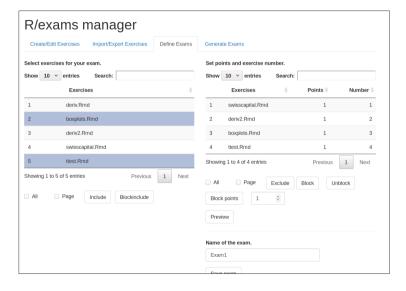
Outlook

Under development:

- Many volunteers: Internationalization for "NOPS" exams.
- Nikolaus Umlauf: Graphical exams manager based on shiny that can be used on a local machine or on a server.
- Achim Zeileis: Reports for lecturers based on IRT models (started in c403).
- Niels Smits: Better management of exercise categories.
- Mirko Birbaumer, Nikolaus Umlauf, Achim Zeileis: Ilias interface based on QTI 1.2.


NOPS internationalization

Please mark the boxes carefully: X Not marked: Or	da	Jensen, Messner	More contributions	
This document is scanned automatically. Please keep clean and d please use a blue or black pen .		Zeileis	welcome	
Only clearly marked and positionally accurate crosses will be	en	Zeileis		
Answers 1 - 15	es	Kogelnik		
16 0 0 0	fi	Nordhausen		
	fr	Allignol		
Merci de cocher soigneusement : ■ Non coché : □ ou ■	gsw	Stauffer		
Cet examen sera corrigé par un système automatisé. Ne pas pliet bille bleu ou noir.	hr	Juraić, Kecojevic		
Seul les marques lisibles et bien positionées seront evaluées		Daróczi, Tóth		
Réponses 1 - 15 Réponses 16 - 21 a b c d e a b c d	it	Zambella		
16 16 16 1	nl	Smits		
M	pt	Calvão, Dellinger,		
A válaszát jelölje egyértelmű x-el: X Jelöletlen cella: vagy		Petutschnig (pt-PT/pt-BR)		
A vizsgalap szkennelése automatikusan történik, ezért kérjük, hog kék vagy fekete tollat. Kizárólag az egyértelműen és pontosan megjelölt válaszok ké		Gatu		
		Gatu		
Válaszok 1 - 15 Válaszok 16 - 21	ru	Demeshev		
	sk	Fabsic		
	sr	Kecojevic		


tr

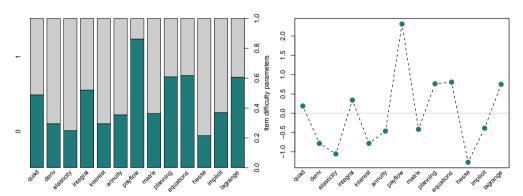
Er

Graphical exams manager

Graphical exams manager

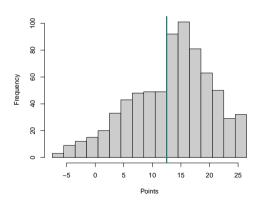
Report: Exercise difficulty, student performance, unidimensionality, fairness.

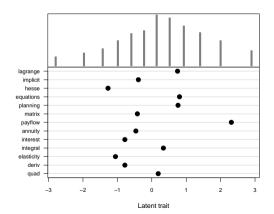
Methods: Psychometrics, especially item response theory.


Example: End-term exam from first-year mathematics course for business and economics students at Universität Innsbruck.

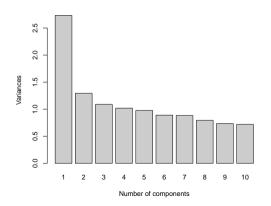
- 729 students (out of 941 registered).
- 13 single-choice exercises on the basics of analysis, linear algebra, financial mathematics.
- Two groups with partially different pools of exercise templates.

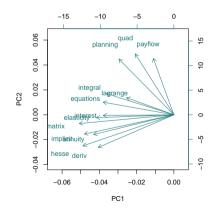
```
R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset(MathExam14W, nsolved > 0 & nsolved < 13)</pre>
```


Item difficulty: Raw proportions vs. Rasch model.

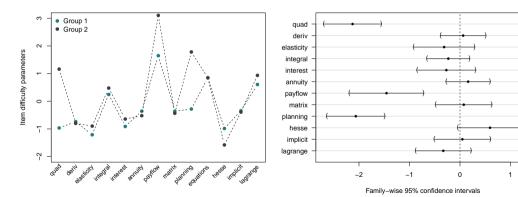

```
R> plot(mex$solved, ...)
R> mr <- raschmodel(mex$solved)
R> plot(mr, ...)
```


Student performance: Points and person-item map.


```
R> hist(MathExam14W$points, ...)
R> piplot(mr)
```



Unidimensionality: Principal component analysis.


```
R> pr <- prcomp(mex$solved, scale = TRUE)
R> plot(pr, ...)
R> biplot(pr, ...)
```


Fairness: Differential item functioning.

```
R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")
R> plot(ma$final_tests, ...)
```


Recommendations

If you want to try R/exams:

- Start with simple exercises before moving to more complex tasks.
- Focus on content of exercises.
- Don't worry about layout/formatting too much.
- Try to build a team (with lecturers, assistants, etc.).
- Use exercise types creatively.
- Don't be afraid to try stuff, especially in formative assessments.
- Thorough quality control for dynamic exercises before summative assessments.

Resources

Contributors: Zeileis, Grün, Leisch, Umlauf, Smits, Birbaumer, Ernst, Keller, Krimm, Stauffer.

Links:

```
Web http://www.R-exams.org/
```

CRAN https://CRAN.R-project.org/package=exams

Forum http://R-Forge.R-project.org/forum/?group_id=1337

 ${\tt StackOverflow https://stackoverflow.com/questions/tagged/exams}$

Twitter @AchimZeileis

References:

- Zeileis A, Umlauf N, Leisch F (2014). "Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond." *Journal of Statistical Software*, 58(1), 1–36. doi:10.18637/jss.v058.i01
- Grün B, Zeileis A (2009). "Automatic Generation of Exams in R." *Journal of Statistical Software*, **29**(10), 1–14. doi:10.18637/jss.v029.i10