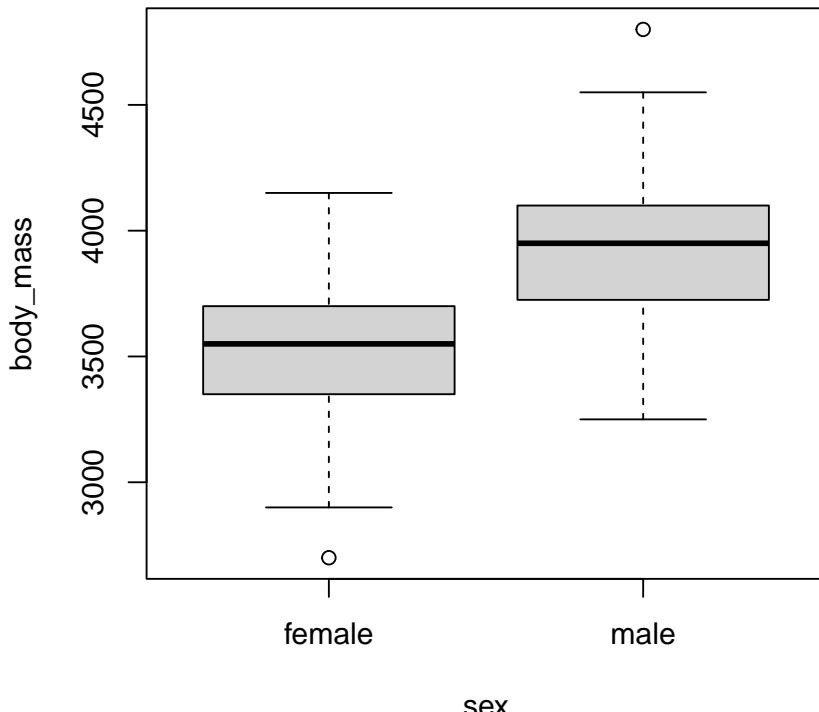


1. Problem


The `penguins` data in base R provides various measurements of adult penguins from three different species. See `?penguins` for more details. Originally, the data was used to study sex dimorphism separately for the three species.

The first three rows of the data can be inspected as follows. Employ `summary()` to obtain a first overview.

```
data("penguins", package = "datasets")
head(penguins, 3)

##   species     island bill_len bill_dep flipper_len body_mass     sex year
## 1 Adelie Torgersen    39.1     18.7       181     3750 male 2007
## 2 Adelie Torgersen    39.5     17.4       186     3800 female 2007
## 3 Adelie Torgersen    40.3     18.0       195     3250 female 2007
```

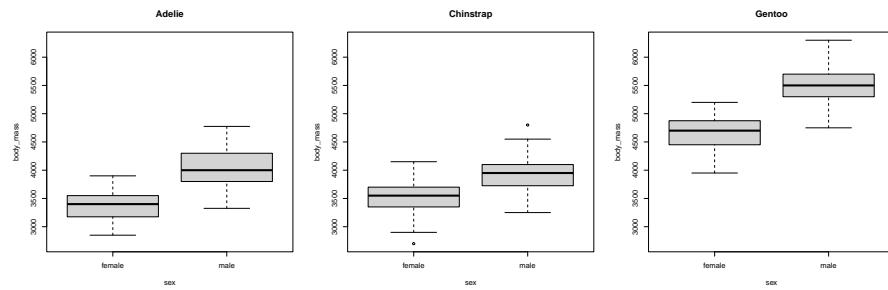
Explore the sex differences with respect to body mass (weight, in grams) of the penguins. Create parallel boxplots of weight by sex, such as the one below, separately for the three species.

Which species does this plot pertain to?

To complement the plot complete the corresponding table of groupwise statistics:

	median	mean	std. deviation
female			
male			

The average weight difference of is thus slightly higher / lower than the median weight difference of .


Compute the full `summary()` of weight by sex for this species and select the correct statements in the following list.

Less than half of the male penguins weigh more than 3731.25 grams. / None of the penguins weighs less than 2700 grams. / The standard deviation of weight is lower for males compared to females.

Solution

One way to obtain the exploratory boxplots separately for the three species is:

```
par(mfrow = c(1, 3))
for(i in levels(penguins$species)) plot(body_mass ~ sex, data = penguins,
  subset = species == i, main = i, ylim = range(penguins$body_mass, na.rm = TRUE))
```


The question shows the parallel boxplots for the Chinstrap species.

Groupwise statistics of body mass by sex and species (including mean, median, and standard deviation) can be obtained by aggregating the data with the combined `summary()` and `sd()` functions.

```
aggregate(body_mass ~ sex + species, data = penguins,
  FUN = function(x) c(summary(x), 'Std. dev.' = sd(x)))

##      sex  species body_mass.Min. body_mass.1st Qu. body_mass.Median
## 1 female Adelie    2850.0000    3175.0000    3400.0000
## 2 male   Adelie    3325.0000    3800.0000    4000.0000
## 3 female Chinstrap  2700.0000    3362.5000    3550.0000
## 4 male   Chinstrap  3250.0000    3731.2500    3950.0000
## 5 female Gentoo    3950.0000    4462.5000    4700.0000
## 6 male   Gentoo    4750.0000    5300.0000    5500.0000
##      body_mass.Mean body_mass.3rd Qu. body_mass.Max. body_mass.Std. dev.
## 1      3368.8356    3550.0000    3900.0000      269.3801
## 2      4043.4932    4300.0000    4775.0000      346.8116
## 3      3527.2059    3693.7500    4150.0000      285.3339
## 4      3938.9706    4100.0000    4800.0000      362.1376
## 5      4679.7414    4875.0000    5200.0000      281.5783
## 6      5484.8361    5700.0000    6300.0000      313.1586
```

Based on this the remaining elements of the question can be answered.