cholesky: Cholesky Decomposition
cholesky
For the matrix \[ \begin{aligned} A &= \left( \begin{array}{rrrr} 16 & 4 & 16 & -4 \\ 4 & 5 & 6 & -9 \\ 16 & 6 & 33 & -28 \\ -4 & -9 & -28 & 58 \end{array} \right). \end{aligned} \] compute the matrix \(L = (\ell_{ij})_{1 \leq i,j \leq 4}\) from the Cholesky decomposition \(A = L L^\top\).
Which of the following statements are true?
The decomposition yields \[ \begin{aligned} L &= \left( \begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 4 & 1 & 4 & 0 \\ -1 & -4 & -5 & 4 \end{array} \right) \end{aligned} \] and hence:
- True. \(\ell_{41} = -1\)
- False. \(\ell_{44} = 4 \nless 4\)
- False. \(\ell_{22} = 2 \neq -1\)
- True. \(\ell_{11} = 4\)
- True. \(\ell_{32} = 1\)
For the matrix \[ \begin{aligned} A &= \left( \begin{array}{rrrr} 1 & -2 & 1 & 0 \\ -2 & 8 & -8 & 8 \\ 1 & -8 & 35 & -2 \\ 0 & 8 & -2 & 21 \end{array} \right). \end{aligned} \] compute the matrix \(L = (\ell_{ij})_{1 \leq i,j \leq 4}\) from the Cholesky decomposition \(A = L L^\top\).
Which of the following statements are true?
The decomposition yields \[ \begin{aligned} L &= \left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 1 & -3 & 5 & 0 \\ 0 & 4 & 2 & 1 \end{array} \right) \end{aligned} \] and hence:
- False. \(\ell_{43} = 2 \nless 2\)
- False. \(\ell_{41} = 0 \nleq -7\)
- False. \(\ell_{11} = 1 \ngtr 4\)
- True. \(\ell_{32} = -3\)
- True. \(\ell_{21} = -2\)
For the matrix \[ \begin{aligned} A &= \left( \begin{array}{rrrr} 9 & 12 & 15 & 15 \\ 12 & 32 & 8 & 28 \\ 15 & 8 & 50 & 19 \\ 15 & 28 & 19 & 45 \end{array} \right). \end{aligned} \] compute the matrix \(L = (\ell_{ij})_{1 \leq i,j \leq 4}\) from the Cholesky decomposition \(A = L L^\top\).
Which of the following statements are true?
The decomposition yields \[ \begin{aligned} L &= \left( \begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 5 & -3 & 4 & 0 \\ 5 & 2 & 0 & 4 \end{array} \right) \end{aligned} \] and hence:
- False. \(\ell_{33} = 4 \nleq -4\)
- True. \(\ell_{21} = 4\)
- False. \(\ell_{31} = 5 \nless 5\)
- False. \(\ell_{44} = 4 \ngeq 5\)
- True. \(\ell_{42} = 2\)
matrix_to_mchoice()
.(Note that the HTML output contains mathematical equations in MathML, rendered by MathJax using ‘mathjax = TRUE’. Instead it is also possible to use ‘converter = “pandoc-mathjax”’ so that LaTeX equations are rendered by MathJax directly.)
Demo code:
library("exams")
set.seed(403)
exams2html("cholesky.Rmd", mathjax = TRUE)
set.seed(403)
exams2pdf("cholesky.Rmd")
set.seed(403)
exams2html("cholesky.Rnw", mathjax = TRUE)
set.seed(403)
exams2pdf("cholesky.Rnw")