cholesky: Cholesky Decomposition
cholesky
For the matrix \[ \begin{aligned} A &= \left( \begin{array}{rrrr} 16 & 4 & 16 & -4 \\ 4 & 5 & 6 & -9 \\ 16 & 6 & 33 & -28 \\ -4 & -9 & -28 & 58 \end{array} \right). \end{aligned} \] compute the matrix \(L = (\ell_{ij})_{1 \leq i,j \leq 4}\) from the Cholesky decomposition \(A = L L^\top\).
Which of the following statements are true?
The decomposition yields \[ \begin{aligned} L &= \left( \begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 4 & 1 & 4 & 0 \\ -1 & -4 & -5 & 4 \end{array} \right) \end{aligned} \] and hence:
- True. \(\ell_{41} = -1\)
- False. \(\ell_{44} = 4 \nless 4\)
- False. \(\ell_{22} = 2 \neq -1\)
- True. \(\ell_{11} = 4\)
- True. \(\ell_{32} = 1\)
For the matrix \[ \begin{aligned} A &= \left( \begin{array}{rrrr} 4 & 6 & -4 & 6 \\ 6 & 25 & -22 & 1 \\ -4 & -22 & 36 & -18 \\ 6 & 1 & -18 & 63 \end{array} \right). \end{aligned} \] compute the matrix \(L = (\ell_{ij})_{1 \leq i,j \leq 4}\) from the Cholesky decomposition \(A = L L^\top\).
Which of the following statements are true?
The decomposition yields \[ \begin{aligned} L &= \left( \begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ -2 & -4 & 4 & 0 \\ 3 & -2 & -5 & 5 \end{array} \right) \end{aligned} \] and hence:
- False. \(\ell_{11} = 2 \ngtr 2\)
- True. \(\ell_{22} = 4\)
- False. \(\ell_{33} = 4 \ngtr 7\)
- True. \(\ell_{31} = -2\)
- True. \(\ell_{41} = 3\)
For the matrix \[ \begin{aligned} A &= \left( \begin{array}{rrrr} 1 & -4 & 3 & 4 \\ -4 & 20 & -10 & -24 \\ 3 & -10 & 35 & -12 \\ 4 & -24 & -12 & 73 \end{array} \right). \end{aligned} \] compute the matrix \(L = (\ell_{ij})_{1 \leq i,j \leq 4}\) from the Cholesky decomposition \(A = L L^\top\).
Which of the following statements are true?
The decomposition yields \[ \begin{aligned} L &= \left( \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -4 & 2 & 0 & 0 \\ 3 & 1 & 5 & 0 \\ 4 & -4 & -4 & 5 \end{array} \right) \end{aligned} \] and hence:
- True. \(\ell_{44} = 5\)
- False. \(\ell_{11} = 1 \nless 1\)
- True. \(\ell_{43} = -4\)
- True. \(\ell_{22} = 2\)
- True. \(\ell_{33} = 5\)
matrix_to_mchoice()
.(Note that the HTML output contains mathematical equations in MathML, rendered by MathJax using ‘mathjax = TRUE’. Instead it is also possible to use ‘converter = “pandoc-mathjax”’ so that LaTeX equations are rendered by MathJax directly.)
Demo code:
library("exams")
set.seed(403)
exams2html("cholesky.Rmd", mathjax = TRUE)
set.seed(403)
exams2pdf("cholesky.Rmd")
set.seed(403)
exams2html("cholesky.Rnw", mathjax = TRUE)
set.seed(403)
exams2pdf("cholesky.Rnw")